Что такое сила архимеда в физике. Старт в науке

В воде некоторые тела не тонут. Если попытаться их силой переместить в толщу воды, то они все-равно всплывут на поверхность. Другие тела погружаются в воду, но почему-то становятся легче.

В воздухе на тела действует сила тяжести. Она никуда не девается и в воде, оставаясь прежней. Но если кажется, что вес тела уменьшается, значит силе тяжести противодействует, то есть действует в противоположном направлении, еще какая-то сила. Это выталкивающая сила , или архимедова сила (сила Архимеда ).

Выталкивающая сила возникает в любой жидкой или газовой среде. Однако в газах она намного меньше, чем в жидкостях, так как их плотность намного меньше. Поэтому при решении ряда задач выталкивающую силу газов не учитывают.

Что создает выталкивающую силу? В воде есть давление, которое создает силу давления воды. Именно эта сила давления воды создает выталкивающую силу. Когда тело погружено в воду, на него со всех сторон, перпендикулярно поверхностям тела, действуют силы давления воды. Равнодействующая всех этих сил давления воды создает выталкивающую силу для определенного тела.

Равнодействующая сил давления воды оказывается направленной вверх. Почему? Как известно, давление воды с глубиной увеличивается. Поэтому на нижнюю поверхность тела будет действовать сила давления воды по величине больше, чем сила, действующая на верхнюю поверхность (если тело полностью погружено в воду).

Так как силы направлены перпендикулярно поверхности, то та, что действует снизу направлена вверх, а та, что действует сверху, направлена вниз. Но действующая снизу сила больше по модулю (по числовому значению). Поэтому равнодействующая сил давления воды направлена вверх, создавая выталкивающую силу воды.

Силы давления, действующие на боковые стороны тела обычно уравновешивают друг друга. Например, та, что действует справа, уравновешивается той, что действует слева. Поэтому эти силы можно не учитывать при расчете выталкивающей силы.

Однако, когда тело плавает на поверхности, то на него действует только сила давления воды снизу. Сверху силы давления воды нет. В данном случае вес тела на поверхности воды оказывается меньше, чем выталкивающая сила. Поэтому тело не погружается в воду.

Если же тело тонет, то есть опускается на дно, то это значит, что его вес оказывается больше выталкивающей силы.

Когда тело полностью погружено в воду, то увеличивается ли выталкивающая сила в зависимости от того, как глубоко погружено тело? Нет, не увеличивается. Ведь вместе с увеличивающейся силой давления на нижнюю поверхность, увеличивается сила давления на верхнюю. Разница между верхним и нижним давлением всегда определяется высотой тела. Высота тела с глубиной не меняется.

Выталкивающая сила, действующая на определенное тело в определенной жидкости, зависит от плотности жидкости и объема тела. При этом объем тела при погружении в жидкость вытесняет равный ему объем воды. Поэтому, можно сказать, что выталкивающая сила определенной жидкости зависти от ее плотности и вытесняемого телом ее объема.

Зависимость давления в жидкости или газе от глубины погружения тела приводит к появлению выталкивающей силы / или иначе силы Архимеда /, действующей на любое тело, погруженное в жидкость или газ.

Архимедова сила направлена всегда противоположно силе тяжести, поэтому вес тела в жидкости или газе всегда меньше веса этого тела в вакууме.

Величина Архимедовой силы определяется по закону Архимеда.

Закон назван в честь древнегреческого ученого Архимеда, жившего в 3 веке до нашей эры.

Открытие основного закона гидростатики - крупнейшее завоевание античной науки. Скорее всего вы уже знаете легенду о том, как Архимед открыл свой закон: "Вызвал его однажды сиракузский царь Гиерон и говорит.... А что было дальше? ...

Закон Архимеда, впервые был упомянут им в трактате " О плавающих телах". Архимед писал: " тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Еще одна формула для определения Архимедовой силы:

Интересно, что сила Архимеда равна нулю, когда погруженное в жидкость тело плотно, всем основанием прижато ко дну.

ВЕС ТЕЛА, ПОГРУЖЕННОГО В ЖИДКОСТЬ (ИЛИ ГАЗ)

Вес тела в вакууме Pо=mg .
Если тело погружено в жидкость или газ,
то P = Pо - Fа = Ро - Pж

Вес тела, погруженного в жидкость или газ, уменьшается на величину выталкивающей силы, действующей на тело.

Или иначе:

Тело, погруженное в жидкость или газ, теряет в своем весе столько, сколько весит вытесненная им жидкость.

КНИЖНАЯ ПОЛКА

ОКАЗЫВАЕТСЯ

Плотность оганизмов, живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны!

Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

У берегов Египта, водится удивительная рыба фагак. Приближение опасности заставляет фагака быстро заглатывать воду. При этом в пищеводе рыбы происходит бурное разложение продуктов питания с выделением значительного количества газов. Газы заполняют не только действующую полость пищевода, но и имеющийся при ней слепой вырост. В результате тело фагака сильно раздувается, и, в соответствии с законом Архимеда, он быстро всплывает на поверхность водоема. Здесь он плавает, повиснув вверх брюхом, пока выделившиеся в его организме газы не улетучатся. После этого сила тяжести опускает его на дно водоема, где он укрывается среди придонных водорослей.

Чилим (водяной орех) после цветения дает под водой тяжелые плоды. Эти плоды настолько тяжелы, что вполне могут увлечь на дно все растение. Однако в это время у чилима, растущего в глубокой воде, на черешках листьев возникают вздутия, придающие ему необходимую подъемную силу, и он не тонет.

Выталкивающую силу, или силу Архимеда, можно вычислить. Особенно легко это сделать для тела, стороны которого прямоугольники (прямоугольного параллелепипеда). Например, такую форму имеет брусок.

Поскольку боковые силы давления жидкости можно не учитывать, так как они взаимно уничтожаются (их равнодействующая равна нулю), то рассматриваются только силы давления воды, действующие на нижнюю и верхнюю поверхности. Если тело не полностью погружено в воду, то есть только сила давления воды, действующая снизу. Она единственная, которая создает выталкивающую силу.

Давление жидкости на глубине h определяется формулой:

Сила давления определяется формулой:

Заменив давление во второй формуле на равную ему правую часть из первой формулы, получим:

Это и есть сила давления жидкости, действующая на поверхность тела на определенной глубине. Если тело плавает на поверхности, то эта сила будет выталкивающей силой (силой Архимеда). h здесь определяется высотой подводной части тела. В таком случае формулу можно записать так: F A = ρghS. Тем самым подчеркнув, что речь идет о силе Архимеда.

Произведение высоты (h) погруженной в воду части прямоугольного бруска на площадь его основания (S) - это объем (V) погруженной части этого тела. Действительно, чтобы найти объем параллелепипеда надо перемножить его ширину (a), длину (b) и высоту (h). Произведение ширины на длину есть площадь основания (S). Поэтому в формуле мы можем заменить произведение hS на V:

Теперь обратим внимание на то, что ρ - это плотность жидкости, а V - это объем погруженного тела (или части тела). Но ведь тело, погружаясь в жидкость, вытесняет из нее объем жидкости, равный погруженному телу. То есть, если погрузить в воду тело объемом 10 см 3 , то оно вытеснит 10 см 3 воды. Конечно, этот объем воды скорее всего не выскочит из емкости, заменившись объемом тела. Просто уровень воды в емкости поднимется на 10 см 3 .

Поэтому в формуле F A = ρgV мы можем иметь в виду не объем погруженного тела, а объем вытесненной телом воды.

Вспомним, что произведение плотности (ρ) на объем (V) - это масса тела (m):

В таком случае формулу, определяющую выталкивающую силу, можно записать так:

Но ведь произведение массы тела (m) на ускорение свободного падения (g) есть вес (P) этого тела. Тогда получается такое равенство:

Таким образом, сила Архимеда (или выталкивающая сила) равна по модулю (численному значению) весу жидкости в объеме, равном объему погруженного в нее тела (или его погруженной части) . Это и есть закон Архимеда .

Если тело в виде бруска полностью погружено в воду, то выталкивающую силу для него определяет разность между силой давления воды сверху и силой давления снизу. Сверху на тело давит сила, равная

F верх = ρgh верх S,

F низ = ρgh низ S,

Тогда мы можем записать

F A = ρgh низ S – ρgh верх S = ρgS(h низ - h верх)

h верх – это расстояние от кромки воды до верхней поверхности тела, а h низ - это расстояние от кромки воды до нижней поверхности тела. Их разность есть высота тела. Следовательно,

F A = ρghS, где h - это высота тела.

Получилось то же самое, что и для частично погруженного тела, хотя там h - это высота части тела, находящейся под водой. В том случае уже было доказано, что F A = P. То же самое выполняется и здесь: выталкивающая сила, действующая на тело, равна по модулю весу вытесненной им жидкости, которая равна по объему погруженному телу.

Обратите внимание, что вес тела и вес жидкости одинаковых объемов чаще всего разный, так как у тела и жидкости чаще всего разные плотности. Поэтому нельзя говорить, что выталкивающая сила равна весу тела. Она равна весу жидкости, объемом равному телу. Причем весу по модулю, так как выталкивающая сила направлена вверх, а вес вниз.

В. М. Краевой ,
, Погарская СОШ № 1, г. Погар, Брянская обл.

Выталкивающая сила. Закон Архимеда

Образовательная цель урока: убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления.

Воспитательная цель: познакомить учащихся с взаимосвязанностью и обусловленностью явлений окружающего мира (величина архимедовой силы обусловлена объёмом погружённого в неё тела и плотностью вытесненной жидкости); содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира; формировать культуру умственного труда; создавать для каждого ученика ситуацию успеха.

Развивающая цель: формировать умения анализировать свойства и явления на основе знаний, выделять главную причину, влияющую на результат (т. е. «зоркость» в поисках); формировать коммуникативные умения, на этапе выдвижения гипотез развивать устную речь, проверить уровень самостоятельности мышления школьника по применению знаний в различных ситуациях.

Ход урока

I. Введение (3 мин)

Учитель. Тема нашего урока «Выталкивающая сила. Закон Архимеда». Архимед… Кто же этот человек, оставивший яркий след в науке? (На экране портрет Архимеда. На фоне музыкального сопровождения учитель рассказывает о нём. ) Архимед – выдающийся учёный Древней Греции, родился в 287 году до н. э. в портовом и судостроительном городе Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона II (покровительствовал Архимеду). В юности провёл несколько лет в крупнейшем культурном центре – Александрии, – где у него сложились дружеские отношения с астрономом Кононом и географом-математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. В Сицилию вернулся уже зрелым учёным. Он прославился многочисленными научными трудами, главным образом в области физики и геометрии. Последние годы жизни Архимед провёл в Сиракузах. Шла 2-я Пуническая война. Город осадило римское войско, обладавшее превосходным флотом. И учёный, не жалея сил, организовал инженерную оборону. Он построил множество удивительных боевых машин, топивших вражеские корабли, разносивших их в щепы, наводивших суеверный страх на солдат. По легенде , Архимед при помощи своей системы зеркал поджёг корабли римлян. Однако слишком маленьким было войско защитников города. И в 212 г. до н. э. Сиракузы были взяты. Гений Архимеда вызывал восхищение у римлян, и римский полководец Марцелл приказал сохранить ему жизнь. Но солдат, не знавший учёного в лицо, ворвавшись в дом, увидел старика (Архимеду было около 75 лет), склонившегося над ящиком с песком, на котором он выполнял чертёж. «Не наступи на мои круги!» – воскликнул Архимед. В ответ воин взмахнул мечом, и великий учёный упал, заливая чертёж кровью.

После Архимеда осталось много трудов. Одним из важнейших открытий стал закон, впоследствии названный законом Архимеда . Существует предание, что идея посетила Архимеда, когда он принимал ванну. С возгласом «Эврика!» он выскочил на улицу и нагим побежал к царю, чтобы сообщить тому о решении задачи. Сегодня нам предстоит познакомиться с этой задачей, убедиться в существовании выталкивающей силы, выяснить причины её возникновения и вывести правила для её вычисления.

II. Объяснение нового материала (16 мин)

Учитель. Вспомним лето. Вы отдыхаете на море, озере или реке Судость, входите в воду. Учите плавать своих друзей. (На экране фотоиллюстрация. ) Легко ли поддерживать на воде тело своего друга?

Учащиеся. Легко.

Учитель. А сможете ли вы его также легко удержать не в воде, а в воздухе?

Учащиеся. Нет.

Учитель. Многие из вас, купаясь, пытались опустить мяч в воду. Ну и как? Получалось?

Учащиеся. Нет.

Учитель. В чём же дело? Обратимся к опыту.

Опыт 1. Учитель пытается погрузить в аквариум плавающий мяч.

Учитель. Я погружаю мяч глубже в воду, отпускаю, и мяч... что делает?

Учащиеся. Всплывает.

Учитель. Почему мяч всплыл на поверхность воды? Что действует на мяч?

Учащиеся. Сила.

Учитель. Совершенно верно, сила, она и вытолкнула мяч из воды. Эта же сила выталкивает из воды и тело вашего друга при обучении плаванию, поэтому, как мы её будем называть?

Учащиеся. Выталкивающей силой.

Учитель. Впервые выталкивающую силу рассчитал древнегреческий учёный Архимед. Поэтому её называют архимедовой силой . Ребята, а всегда ли жидкость действует на погружённое в неё тело? Ведь металлический цилиндр тонет!

Опыт 2. Учитель погружает в воду подвешенный на нити металлический цилиндр. Он тонет.

Учитель. Заметно ли выталкивающее действие воды в этом случае? Чтобы найти ответ, давайте проведём опыт, как описано в задании 1 в ваших рабочих тетрадях (см. Приложение 1 . – Ред. ).

Фронтальная лабораторная работа. На каждом столе динамометр, цилиндр и стакан с водой. На экран последовательно выводятся слайды с описанием её этапов, учащиеся выполняют работу и делают записи в рабочих тетрадях.

Подвесьте цилиндр к динамометру, найдите его вес в воздухе, запишите полученный результат Погрузите цилиндр в жидкость, найдите его вес в жидкости. Запишите полученный результат Сравните вес цилиндра в воде с весом цилиндра в воздухе и сделайте вывод: действует ли на цилиндр, погружённый в жидкость, выталкивающая сила? Так как вес цилиндра в жидкости меньше, чем вес цилиндра в воздухе, то на него действует выталкивающая сила. Куда она направлена? А теперь подумайте, как найти величину этой силы? Что для этого нужно сделать?

Учащиеся. Из веса цилиндра в воздухе надо вычесть вес цилиндра в воде.

Учитель. Совершенно верно! И мы рассмотрели один из способов нахождения выталкивающей силы. Запишите, пожалуйста: «Чтобы найти силу Архимеда, надо из веса тела в воздухе вычесть вес тела в жидкости» <...> Подставьте в формулу измеренные вами значения веса цилиндра в воздухе и в воде и вычислите архимедову силу.

Таким образом, мы убедились, что на все тела, погружённые в жидкость, действует выталкивающая сила: и на те, которые тонут, и на те, которые плавают (на экране демонстрируются фотоиллюстрации ). А если тело погружено в газ, будет ли в этом случае на него действовать сила Архимеда? Оказывается, будет! И это подтверждается полётами воздушных шаров и аэростатов (на экране фотоиллюстрации ). Как говорят аэронавты, их поднимает и держит в воздухе дар природы – сила Архимеда. Обратимся к опыту.

Опыт 3. Стеклянный шар, уравновешенный на весах, помещён внутрь открытого сосуда с мелом на дне. Учитель заливает в сосуд кислоту. Происходит бурная реакция, сосуд постепенно заполняется углекислым газом. Учитель вносит в сосуд горящую спичку – в углекислом газе спичка гаснет.

Учитель. Внимательно следим за равновесием. Что происходит?

Учащиеся. равновесие нарушается.

Учитель. Значит, на тело в газе действует что?

Учащиеся. Выталкивающая сила.

Учитель. Направленная куда?

Учащиеся. Вертикально вверх.

Учитель. Выталкивающая сила может возникать и в сыпучих веществах , таких как песок, рис, горох, поскольку они принимают форму того сосуда, в который помещены, т. е. проявляют свойства жидкостей.

Опыт 4. Учитель кладёт в сосуд пенопласт и засыпает горохом. Встряхивает.

Учитель. Под действием выталкивающей силы пенопласт что делает?

Учащиеся. Всплывает.

Учитель. Вывод: на тела, погружённые в жидкости, газы и даже сыпучие вещества, действует сила Архимеда, направленная вертикально вверх (на экране фотоиллюстрации ). Выясним, почему она возникает.

На резиновый брусок, как и на всякое тело, погружённое в жидкость, действует выталкивающая сила, в чём мы с вами ещё раз убеждаемся.

Опыт 5. Учитель подвешивает резиновый брусок к пружине. Пружина растягивается. Учитель погружает брусок в воду. Пружина несколько сокращается.

Учитель. Мы знаем, что жидкость давит на дно и стенки сосуда, а значит, и на брусок, находящийся в жидкости. Что вы можете сказать о давлении внутри жидкости на одном и том же уровне?

Учащиеся. На одном и том же уровне, по закону Паскаля, давление по всем направлениям одинаково.

Учитель. Правильно, поэтому и силы, с которыми жидкость действует на боковые поверхности бруска, равны. Они направлены навстречу друг другу и сжимают брусок. Давайте измерим давление жидкости на уровне верхней и нижней граней.

Опыт 6. Учитель опускает в сосуд с водой брусок и с помощью жидкостного манометра измеряет давление жидкости на двух уровнях: верхней и нижней граней бруска.

Учитель. Сравните давления жидкости на верхнюю и нижнюю грани бруска. Какое больше?

Учащиеся. Больше на нижнюю грань.

Учитель. Почему?

Учащиеся. Потому что она находится на большей глубине.

Учитель. Следовательно, и сила, с которой жидкость действует на нижнюю грань, больше силы, с которой жидкость действует на верхнюю грань. Куда направлена равнодействующая этих сил?

Учащиеся. вверх, в сторону действия большей силы.

Учитель. Равнодействующую этих сил и называют выталкивающей, или архимедовой силой . А как найти силу Архимеда?

Учащиеся. Надо из большей силы давления, с которой действует жидкость на нижнюю грань, вычесть меньшую силу – на верхнюю грань бруска.

Учитель. Выведем величину силы Архимеда. (По ходу беседы на экране последовательно демонстрируются фрагменты опорного конспекта. ) Подставляя выражения для F н и F в, получим <...>. Чему равна разность высот столбов жидкости h н – h в?

Учащиеся. Высоте бруска.

Учитель. Верно, обозначим её через h . А чему равно произведение площади основания бруска на его высоту?

Учащиеся. Объёму бруска.

Учитель. Мы получаем ещё один способ нахождения архимедовой силы – расчётный < ...>.

Что мы получим, если умножим плотность жидкости на объём тела?

Учащиеся. Массу.

Учитель. Массу чего?

Учащиеся. Массу жидкости.

Учитель. Чему равно произведение?

Учащиеся. Это вес жидкости в объёме тела < ...>.

Учитель. Итак, сила Архимеда равна весу жидкости в объёме погружённой части тела. Докажем эту гипотезу с помощью опыта.

Опыт 7. К пружине подвешены ведёрко и цилиндр. Объём цилиндра равен внутреннему объёму ведёрка. Растяжение пружины отмечено указателем. Учитель целиком погружает цилиндр в отливной сосуд с водой. Вода выливается в стакан.

Учитель. Объём вылившейся воды равен чему?

Учащиеся. Объёму погружённого в воду тела.

Учитель. Указатель пружины отмечает уменьшение веса цилиндра в воде, вызванное действием чего?

Учащиеся. Выталкивающей силы.

Учитель. Выливаем в ведёрко воду из стакана и видим, что указатель пружины возвращается к начальному положению. Итак, под действием архимедовой силы пружина сократилась, а под действием веса вытесненной воды вернулась в начальное положение. Что можно сказать об этих силах?

Учащиеся. Архимедова сила равна весу жидкости, вытесненной телом.

Учитель. Мы рассмотрели третий способ нахождения архимедовой силы. Чтобы найти силу Архимеда, действующую на тело, нужно определить вес жидкости, которую это тело вытесняет.

А теперь сформулируйте самостоятельно закон Архимеда, заполнив пропуски в задании 2 в рабочей тетради. (Ребята делают записи и сверяют их со слайдом. )

III. Решение задач (14 мин)

(На экране демонстрируются рисунки к заданиям 3–5 в рабочих тетрадях, учащиеся записывают решения. По мере выполнения заданий учитель обсуждает фронтально результаты, демонстрируя слайды с верными решениями. )

Учитель (по выполнении задания 3, а ). Поднимите свои рабочие тетради и покажите, как вы это сделали. Сверим правильный результат с показанным на экране.

(По выполнении задания 3, б ). На какой шар действует наименьшая выталкивающая сила? Почему?

(По выполнении задания 4 ). А теперь давайте внимательно посмотрим на этот рисунок и выясним, от чего же сила Архимеда не зависит.

Учащиеся. Архимедова сила не зависит от формы тела, глубины его погружения, плотности тела и его массы.

Учитель (по выполнении задания 5 ). В воду нырнули первоклассник и одиннадцатиклассник. На кого действует большая выталкивающая сила? Почему? (Демонстрирует слайд с видеозадачей, которую заранее составили, нарисовали и озвучили ученики. )

На территории Палестины и Израиля есть странное, на первый взгляд, море. О нём сложились мрачные легенды. В одной из них говорится: «И вода, и земля здесь богом прокляты». Какая-то таинственная неведомая сила выталкивает на поверхность попавшие в него предметы. Однако, несмотря на сказания, плавать в этом море очень даже весело и увлекательно.

Вот как описывает купание в водах Мёртвого моря Марк Твен: «Это было забавное купание, мы не могли утонуть. Здесь можно вытянуться на воде во всю длину, лёжа на спине и сложив руки на груди, причём большая часть тела будет оставаться над водой. При этом можно совсем поднять голову… Вы можете лежать очень удобно на спине, подняв колени к подбородку и охватив их руками, но вскоре перевернётесь, так как голова перевешивает. Вы можете встать на голову – и от середины груди до конца ног будете оставаться вне воды; но вы не сможете долго сохранять такое положение. Вы не можете плыть на спине, подвигаясь сколь-нибудь заметно, так как ноги ваши торчат из воды и вам приходится отталкиваться только пятками. Если же вы плывёте лицом вниз, то подвигаетесь не вперёд, а назад. Лошадь так неустойчива, что не может ни плавать, ни стоять в Мёртвом море, она тотчас же ложится набок».

Учитель. В чём же загадка Мёртвого моря? Почему в нём нельзя утонуть? (Ответы учащихся. )

Ещё раз повторим, как можно найти выталкивающую силу. (Учащиеся проговаривают способы по рисунку в задании 5. Выполняют письменно задание 6 и устно задание 7. )

IV. Отработка знаний и умений (4 мин)

Учитель. А сейчас проверим, хорошо ли вы познакомились с архимедовой силой. Для этого выполним задание 8. Ученица (называет фамилию хорошо успевающей девушки ) будет выполнять это задание на компьютере, остальные – в рабочих тетрадях. (По выполнении задания предлагает ученикам посчитать, сколько раз буква «А» встречается в ответах и поднять вверх столько пальцев. Этот методический приём позволяет оперативно проконтролировать знания. )

V. Проверка знаний и умений (7 мин)

Учитель. Для проверки полученных знаний проведём блицтурнир. Класс разбивается на команды по четыре человека. На экране будут демонстрироваться видеозадачи, озвученные ранее вашими товарищами. Первой отвечает команда, которая раньше поднимет руку. За каждый правильный ответ вы получите «звёздочку умника».

Видеозадача 1. Мой друг, вернувшись из путешествия, показал необычные фотографии. В каком месте он мог сделать эти фотоснимки? Объясните запечатлённые чудеса.


Видеозадача 2. Почему длинные и очень гибкие стебли подводных растений сохраняют в воде вертикальное положение?


Видеозадача 3. Кит, хотя и живёт в воде, но дышит лёгкими. За счёт изменения их объёма он легко может менять глубину погружения. Однако, имея лёгкие, кит не проживёт и часа, если окажется на суше. В чём же дело?


Видеозадача 4. Рыбы могут легко регулировать глубину погружения, меняя объём своего тела благодаря плавательному пузырю. Что происходит с выталкивающей силой, действующей на рыбу, при уменьшении объёма плавательного пузыря?


Видеозадача 5. Почему водолазы с тяжёлыми кислородными баллонами в воде чувствуют себя невесомыми?


VI. Подведение итогов (1 мин)

Учитель. Давайте выясним, какая команда получила большее количество звёздочек. Все её члены получают за блицтурнир оценку «пять». Итак, мы разобрались, почему одни тела плавают на поверхности жидкости, а другие тонут, почему возможно плавание судов, подводных лодок, воздушных шаров и аэростатов. И в жизни вам предстоит ещё не один раз встретиться с силой Архимеда.

Запишите домашнее задание: прочитайте § 48, 49 учебника ; выучите опорный конспект (в рабочей тетради); выполните задание 9 (все) и задание 10 (желающие) из рабочей тетради ; подготовьтесь к лабораторной работе № 7 .

Приложение 1. Фрагмент рабочей тетради 3-го уровня сложности

Задание 1. Действует ли на металлический цилиндр, погружённый в воду, архимедова сила?

Задание 2. Заполните пропуски.

Закон Архимеда. На тело, ______ в жидкость или газ ____________ вертикально _________________ сила, равная ____________ жидкости или газа в _________ тела (или его погружённой части).

Задание 3. В сосуд с водой помещены три шара.

а ) Закрасьте карандашом те шары или части шаров, на которые со стороны жидкости действует выталкивающая сила.

б ) На какой шар действует наименьшая выталкивающая сила? Почему?


Задание 4. Одинаковые или разные выталкивающие силы действуют на алюминиевый кубик и медный шарик, погружённые в жидкость, если их объёмы равны?

ВЫВОД. Сила Архимеда не зависит от:

Задание 5. На какой из двух одинаковых шаров действует бóльшая архимедова сила, если первый помещён в воду, а второй в керосин?

Задание 6. В апреле 1912 г. отправилось в первое и последнее плавание крупнейшее пассажирское судно «Титаник» водоизмещением 46 300 т (масса воды, вытесняемой судном). Найдите величину выталкивающей силы, действующей на него.

Задание 7. Быстро и (желательно) устно решите задачи.

Задание 8. Хорошо ли ты знаешь силу Архимеда? (Приводим один вариант. )

Варианты ответов

На какое тело действует бóльшая архимедова сила?

А) На первое;

Б) на второе;

В) на оба тела одинаковая

На какое тело действует меньшая выталкивающая сила?

А) На первое;

Б) на второе;

В) на третье

На какое тело действует бóльшая выталкивающая сила?

А) На первое;

Б) на второе;

В) на третье

К коромыслу весов подвешены два алюминиевых цилиндра одинакового объёма. Нарушится ли равновесие весов, если один цилиндр поместить в воду, а другой – в спирт?

А) Перевесит цилиндр в спирте;

Б) перевесит цилиндр в воде;

В) не нарушится

Определите выталкивающую силу, действующую на погружённое в воду тело объёмом 0,001 м 3

Задание 9. Сравните выталкивающие силы, действующие на тела 1 и 2 .

Одинаковые железные шарики m 1 = m 2
F A1 _____ F A2

Задание 10. Найдите выталкивающую силу в следующих ситуациях.

Литература

  1. Пёрышкин А.В. Физика. 8 класс. М.: Дрофа, 1999.
  2. Чижевский Е.А., Иноземцева С.В., Кантор Р.В. Репетитор по физике Кирилла и Мефодия. [Электронный ресурс] 1 эл.-опт. диск. 1999.

Приложение 2. Самоанализ урока

Самоанализ урока является одним из инструментов совершенствования учителя, формирования и развития его профессиональных качеств, улучшения техники преподавания. В ходе самоанализа преподаватель получает возможность взглянуть на свой урок как бы со стороны, осознать его как явление в целом, целенаправленно осмыслить совокупность собственных теоретических знаний, способов, приёмов работы. Это – рефлексия, позволяющая оценить свои сильные и слабые стороны, выявить резервы, уточнить отдельные моменты индивидуального стиля деятельности.

В своём самоанализе я буду рассматривать урок в основном с позиции традиционной парадигмы, но, кроме того, предполагаю поднять вопросы, касающиеся традиционно-развивающей и личностно-ориентированной парадигм.

Раздел «Давление твёрдых тел жидкостей и газов».

Тема «Выталкивающая сила. Закон Архимеда».

Место урока в теме: урок № 15. Согласно методике, урок опирается на темы «Закон Паскаля», «Давление жидкости на дно и стенки сосуда», «Сложение двух сил, направленных по одной прямой», «Плотность вещества», «Расчёт массы тела по его плотности», «Три состояния вещества». Тема урока сама является базовой при изучении тем «Плавание тел», «Плавание судов», «Воздухоплавание», а также применяется при решении отдельных олимпиадных задач и задач по динамике в 9-м классе.

Урок проходил в 7-Д классе. По словам преподавателей, это класс со средним уровнем интеллектуального развития учащихся. Исходя из этих особенностей, я и построил урок.

Форма урока: урок изучения нового материала и первичного его закрепления.

Выбранная структура урока позволяет развивать познавательную активность школьников и приучает к мысли, что они при желании могут управлять своей успеваемостью.

Триединая цель (см. сценарий): сообщена учащимся после мобилизующего рассказа об Архимеде.

Оборудование: компьютер с проектором, презентация, мультимедийный репетитор по физике Кирилла и Мефодия, трёхуровневые рабочие тетради, оценочные «звёздочки умника», стаканы с водой, динамометры, металлические цилиндры, аквариум с водой, резиновый мяч, стеклянный шар для взвешивания воздуха, сосуд для получения углекислого газа, молотый мел, кислота, весы с разновесами, три штатива, резиновый брусок, пружина, пенопласт, сосуд с горохом, ведёрко Архимеда. Учебное оборудование использовалось целесообразно, во время урока на виду был только иллюстрируемый материал. Когда всё внимание учеников должно было быть на учителе, слайды выключались.

Межпредметные связи: физики с историей, биологией, экологией, литературой, изобразительным искусством, географией.

Методы: объяснительно-иллюстративный, проблемного изложения, частично-поисковый, словесный (рассказ и эвристическая беседа), демонстрация опытов, опорных конспектов, схем, заданий, видеофрагментов, экспериментальный (фронтальная лабораторная работа, решение качественных и количественных задач), стимулирование интереса к учению, контроль и самоконтроль (устный, письменный и лабораторный) и др. Все перечисленные методы способствовали развитию умственной самостоятельности, познавательной активности и соответствуют технологии выработки умений и навыков в процессе проблемного обучения.

Хронометраж по этапам урока: Рассказ об Архимеде – 3 мин Объяснение нового материала – 12 мин Фронтальная лабораторная работа – 4 мин Первичное закрепление знаний и решение качественных задач – 10 мин Решение количественных задач – 4 мин Выполнение тестовых заданий – 4 мин Блицтурнир – 7 мин Подведение итогов и задание на дом – 1 мин.

Формы работы с учащимися: фронтальная, групповая (группы постоянного состава), индивидуальная.

На уроке была использована самостоятельня работа, организована взаимопроверка, а также сверка с верной информацией на проекционном экране. Считаю, что методических нарушений не было, содержание учащимися было понято, время на подготовку ограничено, контроль был разнообразен.

Для удобства работы и экономии времени на уроке для учеников были подготовлены три типа рабочих тетрадей: тетради зелёного цвета содержали задания 1-го уровня сложности, выполнение которых оценивалось на «3», тетради жёлтого цвета – задания 2-го уровня сложности, на оценку «4», красного – 3-го уровня сложности, на оценку «5». В тетрадях были напечатаны все основные опорные схемы и опорные конспекты, чтобы ученикам не нужно было тратить время на их переписывание. Кроме значительной экономии времени урока, рабочая тетрадь позволяет существенно снизить утомляемость учеников благодаря дифференцированным (в том числе и домашним) заданиям. В специальную таблицу выносятся оценки за четыре вида работ на уроке, по которым учитель выставляет итоговую оценку. Тестовое задание представлено в двух вариантах.

Для текущей проверки знаний было выбрано тестирование. Это современная, удобная для учителя технология, позволяющая максимально объективно оценить уровень достижений ученика и требующая минимум времени для проверки. одна ученица выполняла это задание на компьютере, остальные – в рабочих тетрадях. Психологически грамотные компьютерные комментарии оказывали на ученицу сильное воспитательное воздействие.

Домашнее задание: дано в рамках урока, с инструктажем к выполнению.

Во время проведения блицтурнира, я сделал текущий самоанализ и изменил запланированную концовку урока: вместо повторения опорного конспекта дал из резерва три проблемных вопроса блицтурнира и тем самым перенёс центр «тяжести» данного этапа урока со школы памяти на школу развития.

Также в качестве резерва у меня было запланировано решение экспериментальной задачи, повторяющей опыт Архимеда по определению объёма тела сложной формы, но на уроке резерв не был использован.

Планирование урока: позволило развить умения анализировать, сравнивать, выделять главное, абстрагировать, конкретизировать, обобщать, умения вести диалог, коммуникативные умения учащихся, происходило обучение перцептивным действиям. Ученикам давалось многосенсорное представление информации в виде аудиального, визуального и кинестетического способов обучения. за урок 7 раз менялись виды деятельности. Такой подход позволил воздействовать на всех учащихся и дал возможность получать информацию, выбрав свой входной канал.

Время урока использовано рационально, уровень проверки знаний рационален, с точки зрения психодинамических характеристик ритм урока менялся со сменой вида деятельности. Темп определялся трудностью изучаемого материала: лёгкий материал давался в быстром темпе, при переходе к трудному замедлялась скорость речи, материал многократно повторялся (например, я многократно обращал внимание на то, что сила Архимеда зависит только от плотности жидкости и объёма тела или его погружённой части).

Ключевая проблема удержания внимания была полностью решена за счёт применения интерактивных технологий – смены ярких впечатлений от увиденного на проекционном экране и чередования видов учебной деятельности. При этом внимание носило не созерцательный, как при просмотре видеофильмов, а мобилизующий характер, т. к. требовало ответной реакции учащихся. Кроме того, для удержания внимания применялось раскрытие перед учащимися через решение практических задач и заданий блицтурнира жизненной значимости изучаемого материала. Яркость, новизну и структурирование наглядному материалу придавало использование компьютера, разнообразных демонстраций и рабочей тетради.

При объяснении нового материала и решении задач учитывался объём кратковременной памяти. После перевода нового материала в долговременную память в целях закрепления его следов на последующих уроках я применяю эффект реминисценции.

Положительные переживания ребят стимулировались похвалой и одобрительным кивком. Психологический микроклимат поддерживался оптимистическим и мажорным настроением учителя.

Воспитательный потенциал реализован. Общение было доброжелательным, демократичным, толерантным, доминировало положительное нравственно-эмоциональное состояние; оборудование и оснащение способствовало воспитанию эстетической культуры.

В подготовке видеозадач к уроку самое активное участие принимали ученики. Они подбирали и озвучивали видеофрагменты, сами сделали рисунок к задаче о Мёртвом море. При этом успешно решалась проблема развития познавательного интереса. Связь обучения с жизнью, бытом является мощным средством воспитания интереса к уроку. Методика применения видеозадач содействует формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира, позволяет сделать процесс обучения более интерактивным, ориентированным на практику, развивает образное мышление, повышает познавательную активность, пробуждает интерес к предмету и мотивацию к изучению физики. Всё это происходит на фоне выраженного эмоционального восприятия: учащиеся начинают сами интересоваться, узнавать в повседневной жизни те или иные физические явления, стараясь применять полученные знания на практике.

Считаю, что конечный результат урока достигнут, т. к. учащиеся научились в различных ситуациях находить силу Архимеда, плотность жидкости и объём тела. Они общались, вели диалоги, в ходе которых происходило развитие мышления, проявляли интерес к предмету, было большое количество правильных ответов.

Особенность урока: 1) включён материал двух уроков (см. выше); 2) урок в высокой степени интерактивен, имеет практическую направленность, включает в себя много самостоятельной работы, изучаемый материал связан с жизнью; 3) для снижения утомления учащихся применены две валеологические технологии – игра «Блицтурнир» и персональный компьютер, – что обеспечило высокий уровень познавательной активности учеников не за счёт их здоровья.

Самооценка урока по Б.А. Татьянкину (Проектирование технологии обучения физике в 7 классе. Воронеж: ВорОИПКиПРО, 2001) приведена в табл. 1.

Таблица 1. Самооценка урока по Б.А. Татьянкину

Самооценка урока по Ю.А. Конаржевскому (Анализ урока. М.: Центр «Педагогический поиск», 2003) в трёхбалльной системе приведена в табл. 2.

Таблица 2

Характеристика урока

Цель урока названа

Организованы действия учащихся по принятию цели деятельности

Соответствие содержания учебного материала цели урока обеспечено:

а ) мотивацией деятельности,

б ) сотрудничеством учителя и учащихся,

в ) контролем и самоконтролем.

Соответствие методов обучения содержанию учебного материала

Соответствие форм организации познавательной деятельности обеспечили:

а ) сотрудничество между учащимися,

б ) включение каждого ученика в деятельность по достижению триединой дидактической цели.

Формы организации познавательной деятельности отобраны в соответствии с содержанием учебного материала и целью урока, методами обучения

Уровень достижения триединой цели урока:

а ) образовательный аспект,

б ) воспитательный аспект,

в ) развивающий аспект.

Итак, эффективность урока Э у = 22/24 = 92% (т. е. больше критерия 86%), нет ни одной оценки 0 баллов, следовательно, урок можно считать отличным.


Эта легенда, возможно, не так далека от истины. См. «Лучевое оружие античности», № 4/2009 . – Ред.

Вопрос не столь прост. Приводим выдержку из заметки К.Ю. Богданова (см. № : «К сожалению, наука до сих пор не в состоянии до конца объяснить явления, происходящие в гранулярных смесях при их встряхивании. И основная причина здесь кроется в том, что сухая смесь по своим свойствам не похожа ни на жидкость, ни на твёрдое тело. Поэтому многие законы, упрощающие анализ поведения жидкостей и твёрдых тел, здесь просто неприменимы. Только недавно, с появлением суперкомпьютеров, стало возможным моделировать скольжение друг по другу тысяч песчинок. Первые такие исследования, проведённые в 1987 г. в Технологическом институте штата Нью-Джерси (США), показали, что при встряхивании, как и следовало ожидать, между соседними гранулами образуются промежутки. В эти промежутки скатываются под действием силы тяжести соседние гранулы. Оказалось, что вероятность образования малого промежутка всегда выше, чем большого. Поэтому более мелкие гранулы и скатываются вниз чаще. Таким образом, после интенсивного встряхивания происходит концентрация мелких гранул внизу и соответственно крупных гранул наверху». – Ред.

Несмотря на явные различия свойств жидкостей и газов, во многих случаях их поведение определяется одними и теми же параметрами и уравнениями, что позволяет использовать единый подход к изучению свойств этих веществ.

В механике газы и жидкости рассматривают как сплошные среды. Предполагается, что молекулы вещества распределены непрерывно в занимаемой ими части пространства. При этом плотность газа значительно зависит от давления, в то время как для жидкости ситуация иная. Обычно при решении задач этим фактом пренебрегают, используя обобщенное понятие несжимаемой жидкости, плотность которой равномерна и постоянна.

Определение 1

Давление определяется как нормальная сила $F$, действующая со стороны жидкости на единицу площади $S$.

$ρ = \frac{\Delta P}{\Delta S}$.

Замечание 1

Давление измеряется в паскалях. Один Па равен силе в 1 Н, действующей на единицу площади 1 кв. м.

В состояние равновесия давление жидкости или газа описывается законом Паскаля, согласно которому давление на поверхность жидкости, производимое внешними силами, передается жидкостью одинаково во всех направлениях.

При механическом равновесии, давление жидкости по горизонтали всегда одинаково; следовательно, свободная поверхность статичной жидкости всегда горизонтальна (кроме случаев соприкосновения со стенками сосуда). Если принять во внимание условие несжимаемости жидкости, то плотность рассматриваемой среды не зависит от давления.

Представим некоторый объем жидкости, ограниченный вертикальным цилиндром. Поперечное сечение столба жидкости обозначим $S$, его высоту $h$, плотность жидкости $ρ$, вес $P=ρgSh$. Тогда справедливо следующее:

$p = \frac{P}{S} = \frac{ρgSh}{S} = ρgh$,

где $p$ - давление на дно сосуда.

Отсюда следует, что давление меняется линейно, в зависимости от высоты. При этом $ρgh$ - гидростатическое давление, изменением которого и объясняется возникновение силы Архимеда.

Формулировка закона Архимеда

Закон Архимеда, один из основных законов гидростатики и аэростатики, гласит: на тело, погруженное в жидкость или газ, действует выталкивающая или подъемная сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Замечание 2

Возникновение Архимедовой силы связано с тем, что среда - жидкость или газ - стремится занять пространство, отнятое погруженным в нее телом; при этом тело выталкивается из среды.

Отсюда и второе название для этого явление – выталкивающая или гидростатическая подъемная сила.

Выталкивающая сила не зависит от формы тела, также как и от состава тела и прочих его характеристик.

Возникновение Архимедовой силы обусловлено разностью давления среды на разных глубинах. Например, давление на нижние слои воды всегда больше, чем на верхние слои.

Проявление силы Архимеда возможно лишь при наличии тяжести. Так, например, на Луне выталкивающая сила будет в шесть раз меньше, чем на Земле для тел равных объемов.

Возникновение Силы Архимеда

Представим себе любую жидкую среду, например, обычную воду. Мысленно выделим произвольный объем воды замкнутой поверхностью $S$. Поскольку вся жидкость по условию находится в механическом равновесии, выделенный нами объем также статичен. Это означает, что равнодействующая и момент внешних сил, воздействующих на этот ограниченный объем, принимают нулевые значения. Внешние силы в данном случае – вес ограниченного объема воды и давление окружающей жидкости на внешнюю поверхность $S$. При этом получается, что равнодействующая $F$ сил гидростатического давления, испытываемого поверхностью $S$, равна весу того объема жидкости, который был ограничен поверхностью $S$. Для того чтобы полный момент внешних сил обратился в нуль, равнодействующая $F$ должна быть направлена вверх и проходить через центр масс выделенного объема жидкости.

Теперь обозначим, что вместо этой условного ограниченной жидкости в среду было помещено любое твердое тело соответствующего объема. Если соблюдается условие механического равновесия, то со стороны окружающей среды никаких изменений не произойдет, в том числе останется прежним давление, действующее на поверхность $S$. Таким образом мы можем дать более точную формулировку закона Архимеда:

Замечание 3

Если тело, погруженное в жидкость, находится в механическом равновесии, то со стороны окружающей его среды на него действует выталкивающая сила гидростатического давления, численно равная весу среды в объеме, вытесненным телом.

Выталкивающая сила направлена вверх и проходит через центр масс тела. Итак, согласно закону Архимеда для выталкивающей силы выполняется:

$F_A = ρgV$, где:

  • $V_A$ - выталкивающая сила, H;
  • $ρ$ - плотность жидкости или газа, $кг/м^3$;
  • $V$ - объем тела, погруженного в среду, $м^3$;
  • $g$ - ускорение свободного падения, $м/с^2$.

Выталкивающая сила, действующая на тело, противоположна по направлению силе тяжести, поэтому поведение погруженного тела в среде зависит от соотношения модулей силы тяжести $F_T$ и Архимедовой силы $F_A$. Здесь возможны три случая:

  1. $F_T$ > $F_A$. Сила тяжести превышает выталкивающую силу, следовательно, тело тонет/падает;
  2. $F_T$ = $F_A$. Сила тяжести уравнивается с выталкивающей силой, поэтому тело «зависает» в жидкости;
  3. $F_T$